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ABSTRACT

We present experimental results highlighting two key differences resulting from the choice of training
algorithm for two-layer neural networks. The spectral bias of neural networks is well known, while
the spectral bias dependence on the choice of training algorithm is less studied. Our experiments
demonstrate that an adaptive random Fourier features algorithm (ARFF) can yield a spectral bias
closer to zero compared to the stochastic gradient descent optimizer (SGD). Additionally, we train
two identically structured classifiers, employing SGD and ARFF, to the same accuracy levels and
empirically assess their robustness against adversarial noise attacks.
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1 Introduction

Consider the data {xn, yn} ∈ Rd × R, n = 1, ..., N i.i.d. sampled from an unknown probability distribution with
probability density function ρ̃(x, y). We assume that there exists an unknown underlying function f : Rd → R such
that f(xn) = yn + εn, n = 1, ..., N where E[εn] = 0 and E[ε2n] < ∞. We address the supervised learning problem of
fitting a two-layer neural network β(x) =

∑K
k=1 β̂ke

iωk·x to the data {xn, yn}Nn=1 by numerically approximating a
solution to the minimization problem

min
(ω,β̂)∈RKd×CK

{
Eρ̃

[
|y − β(x)|2

]
+ λ

K∑
k=1

|β̂k|2
}

(1)

where λ ∈ R is a Tikhonov regularization parameter. Note that, in practice, the data density ρ̃ is unknown, therefore we
consider the empirical minimization problem instead. Considering ωk as i.i.d. samples from an unknown distribution
with probability density function p(ωk) and by following [3] an O(1/K) error bound to Problem (1) is derived in
[13]. However, in the work [13], only ωk is treated as a random variable, while β̂k is determined for a sampled ωk

without accounting for any inherent randomness in β̂k. Further, the constant in the O(1/K) error bound is shown to be
minimized by sampling the weights ωk from p∗(ω) := |f̂(ω)|/‖f̂‖L1(Rd) where f̂ denotes the Fourier transform of f .
Given only data {xn, yn}Nn=1 means that f̂ typically is not accessible. The goal of the adaptive random Fourier features
with Metropolis sampling algorithm (ARFF), presented in and denoted as Algorithm 1 in [13], is to approximately
sample ω from p∗, given only data. Applications of the ARFF algorithm include wind field reconstruction, see [15],
and pre-training of deep residual neural networks, see [14].
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For simplicity in our numerical experiments, we employ the cosine activation function. This choice necessitates the
introduction of a bias term bk for each k = 1, . . . ,K in the argument of the cosine function. The purpose of this bias is
to offset the contribution of the sinusoidal component in the Fourier representation of the target function, f .

For the ARFF training, the associated least squares problem, in the amplitudes β̂ for sampled frequencies ωk and
bias bk, k = 1, ...,K is minβ̂∈RK (N−1|Sβ̂ − y|2 + λ|β̂|2), where S ∈ RN×K is a matrix with elements Sn,k =

cos(ωk · xn + bk), n = 1, ..., N , k = 1, ...,K and y = (y1, ..., yN ) ∈ RN . The SGD training follows the standard
approach and is adapted from the TensorFlow implementation.

Rahimi and Recht first introduce random Fourier features in [21] as a computationally fast and accurate way to
approximate the kernels of Support Vector Machines, [29, 25]. In [27], they show that by manually adjusting the
sampling distribution, Fourier features neural networks can learn high-frequency components and thus overcome the
spectral bias. Our approach is to adaptively sample the frequencies with ARFF and quantify the spectral bias with the
definition introduced in [16].

While several innovative adversarial attack methods [11, 28, 2], and efficient defense mechanisms [18, 1, 7] exist, we
demonstrate how just changing the training algorithm can affect the robustness of a simple adversarial attack.
Our contributions in summary

• We show, experimentally, how training a two-layer neural network with adaptive random Fourier features [13]
can overcome the spectral bias, as defined in [16], compared to training with stochastic gradient descent.

• We show, experimentally, how two sets of identically structured neural networks with the same classification
rate on the MNIST dataset have different degrees of robustness to a simple additive adversarial attack,
depending on if we train them with adaptive random Fourier features [13] or with stochastic gradient descent.

2 Spectral bias

Numerous prior investigations [20, 12, 32, 19, 5], encompassing both empirical and theoretical approaches have delved
into the spectral bias of neural networks: the inclination to learn low-frequency content. Kiessling et al. introduced a
computable definition of spectral bias, as documented in [16], which shares similarities with the approaches outlined in
[33] and [34].

In this work, we employ the spectral bias definition provided by Kiessling et al. in [16] to assess and contrast the
spectral bias between two-layer neural networks trained by ARFF and SGD.

The spectral bias of a neural network β is defined as SB = (Ehigh − Elow)/(Ehigh + Elow), in [16], where Ehigh =∫
Ωhigh

|r̂ρ(ω)|2dω

(2π)dV ar(f(x))
and Elow =

∫
Ωlow

|r̂ρ(ω)|2dω
(2π)dV ar(f(x))

, respectively, represent the error in the high- and low-frequency domain.
Here V ar(f(x)) denotes the variance of the unknown target function f and is approximated by the given dataset by
using Monte Carlo integration, r̂ρ(ω) denotes the frequency spectrum of the function rρ(x) =

√
ρ(x)(r(x)− Eρ[r(x)])

where r(x) = f(x)− β(x) is the residual, and ρ(x) denotes the density of the input data x.

The symbols Ωhigh and Ωlow denote the partitioned frequency domain, delineated by a designated cutoff frequency ω0,
that is, Ωhigh = {ω ∈ Rd : |ω|∞ > ω0}, and Ωlow = {ω ∈ Rd : |ω|∞ ≤ ω0}. The cutoff frequency ω0 is specified to
equalize the contributions of Ωlow and Ωhigh to the total variance, expressed as

∫
Ωlow

|f̂ρ(ω)|2dω =
∫
Ωhigh

|f̂ρ(ω)|2dω,
where f̂ρ denotes the Fourier transform of the function fρ(x) =

√
ρ(x)(f(x) − Eρ[f(x)]). The integral equality to

obtain the cutoff frequencies and, consequently, the spectral bias are in practice approximated by Methods 1 and 2 given
in [16].

If the neural network performs equally well for low and high-frequency content, the spectral bias (SB) tends to approach
zero. In such cases, the neural network will be characterized as spectrally unbiased.

Numerical comparison of spectral bias in trained neural networks using SGD and ARFF training algorithms

For this experiment, we consider the target function f : R → R

f(x) = e−
x2

2 Si
(x
a

)
, where Si (x) =

∫ x

0

sin(t)

t
dt with a = 10−2.

We train a two-layer neural network β(x;ω, β̂) =
∑K

k=1 β̂k cos(ωk · x + bk) to approximate the target function f ,
where K is the number of nodes in the neural network, ωk ∈ R, x ∈ R and β̂ ∈ R. While keeping the architecture the
same, we train the neural network with SGD and ARFF. We compute the spectral bias of the trained neural network
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after getting the desired accuracy in the approximation of the target function. We use Method 1, described in [16], for
this experiment.

We generate training, validation, and test datasets as follows: sample N x-points from N (0, 1), evaluate the target
function to obtain f(x), and normalize all three datasets by subtracting the mean and dividing by the standard deviation
of the training dataset {xn, f(xn)}Nn=1. The error is then computed as the mean squared error for each dataset.

Figure 1: Spectral bias comparison, computed after
each epoch, of a neural network trained with SGD and
ARFF by using Method 1 from [16].

Both training algorithms, SGD and ARFF, are executed for
M = 104 epochs. In the case of ARFF, we employ the follow-
ing parameters: Tikhonov regularization λ = 0.05, proposal
width δ = 2 in the sampling algorithm, and the exponent
γ = 3d− 2 in the acceptance-rejection ratio, where d = 1. For
SGD we utilize a batch size of 32 and a learning rate of 0.0002.

In Figure 1, we delineate a comparison of the spectral bias
exhibited by a neural network comprising K = 1024 neurons in
the hidden layer and trained by two distinct training algorithms,
SGD and ARFF.

The comparison reveals that the spectral bias of the neural
network trained with SGD remains close to unity. In contrast,
the ARFF training algorithm enables the neural network to
achieve a state of spectral unbiasedness.

We have extended this test to include varying widths in a two-
layer neural network and obtained similar results.

3 Robustness to an additive adversarial attack

This experiment compares the robustness of two-layer neural
networks trained with ARFF and SGD against an additive ad-
versarial black box attack.

Datasets
We consider the MNIST dataset that consists of 70, 000 handwritten digit images of size 28× 28 and its corresponding
labels y ∈ {0, 1, ..., 9}. The task is to classify the images between the digits 0 to 9.

We partition the datasets into training, validation, and test data with the corresponding ratio of 7 : 2 : 1.

Neural network structure and training
We train ten two-layer neural networks βi(x;ωi, β̂

i
, bi) =

∑K
k=1 β̂

i
k cos(ω

i
k · x + bi), i = 0, ..., 9 with K = 210

nodes each, with both ARFF and SGD where ωi
k ∈ Rd,x ∈ Rd, bi ∈ R, β̂i

k ∈ R, and d = 784 for the MNIST dataset.

We train each neural network to classify one number each. E.g. β2(x;ω2, β̂
2
, b2) is trained to tell if a handwritten

digit is the number 2 or not. For SGD we use one least squares loss function for each neural network.

The training data {(xn; (y
0
n, y

1
n, ..., y

9
n))}Nn=1 consist of vectorized handwritten digit images xn ∈ R784 with corre-

sponding vector labels (y0n, y
1
n, ..., y

9
n). Each vector label has one component equal to one and the others equal to zero.

The index i of the component yin equal to 1 is the number that the handwritten digit xn represents.

In the following experiments, we run both the training algorithms, SGD and ARFF, for M = 100 epochs each. For
ARFF, the parameters are set to λ = 0.05, δ = 0.02 γ = 3d− 2, with d = 784. For SGD, we use a batch size of 32
and a learning rate of 0.002.

Classification and computation of the accuracy

A handwritten test digit x ∈ R784 is classified as the number argmaxi{βi(x;ωi, β̂
i
, bi)} where {ωi

k, β̂
i
k, b

i
k}Kk=1, i =

0, ..., 9 are the trained weights and biases resulting from either ARFF or SGD.

We evaluate the performance of the artificial neural networks by the classification accuracy, defined as accuracy =
Ncorrectly classified

Ntotal
, where Ntotal represents the total number of test images, and Ncorrectly classified denotes the count of accurately

classified handwritten test images out of Ntotal.
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Random noise attack

We apply the simple black box attack of adding random normal distributed noise to npixel ∈ [0, d] randomly chosen
pixels of each Ntest images in the test dataset to get the noisy test data xn

noise = xn
test+δn�rn, rn ∼ N(0, σ2I), n =

1, ..., Ntest where I ∈ Rd×d is the identity matrix, σ ∈ R, and � denotes component-wise multiplication. Here
the component δi of δ satisfies δi ∈ {0, 1} and the number of the elements which are equal to one is npixel, i.e.∑d

i=1 δi = npixel.

Experiment 1: We present the classification rates on the noisy test images, where npixel = 50, for different values of σ
on the left in Figure 2 for both SGD and ARFF. Even though both training algorithms have trained the neural networks
to the same classification rate, the accuracy of the neural networks trained by SGD decreases faster when σ increases
compared to the accuracy of the neural networks trained by ARFF.

Experiment 2: We present the classification rates on the noisy test images, where npixel = d = 784, for different
values of σ in the middle in Figure 2. Contrary to the results in Experiment 1, we see a faster decrease in the accuracy
when σ increases for ARFF than for SGD.

Experiment 3: As in Experiment 2 we use npixel = d = 784. The difference is that we also add noise, from N (0, σ2),
to all 784 pixels of each image in the validation dataset and use the best classification rate on the validation data as
stopping criterion for the training. We present the results on the right in Figure 2. The classification rate for SGD is
qualitatively the same as in Experiment 2, but now the classification rate for ARFF is better than for SGD. The optimal
stopping epoch differs for each value of σ, though.

Remark: For comparison, we run Experiments 1, 2, and 3 analogously on the CIFAR-10 dataset as well. The results
are qualitatively the same. I.e., ARFF shows better results for Experiments 1 and 3, while SGD gives better results for
Experiment 2.

Figure 2: Left, Experiment 1: The figure shows the accuracy on the MNIST test data after a sparse black box attack.
Middle, Experiment 2: Accuracy on the MNIST test data after a black box attack for different noise levels. Right,
Experiment 3: Accuracy on the MNIST test dataset after a black box noise attack for classifiers tuned, with the help of
noisy validation data, to withstand noise attacks. In Experiment 3 the stopping criteria depends on the noise level σ.

4 Conclusion

Our experimental findings underscore the effectiveness of ARFF-trained neural networks in efficiently capturing
high-frequency content within the context of function reconstruction. We have also demonstrated the heightened
robustness of ARFF-trained models when subjected to sparse black-box noise attacks at varying levels. While the
same superiority is not consistently observed in the face of full black-box noise attacks, where noise is added to
every pixel of the input image, we establish that the ARFF-trained neural network can maintain its robustness and
outperform SGD by strategically leveraging noisy validation datasets and implementing early stopping. This insight
provides practitioners with a viable strategy for prioritizing neural network robustness. Moreover, this study paves
the way for future investigations, urging a more comprehensive exploration of ARFF training under sophisticated and
well-structured attacks, the Square Attack [2], which we eagerly anticipate exploring in subsequent research endeavors.
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