
REAL-TIME INFERENCE AND EXTRAPOLATION VIA A
DIFFUSION-INSPIRED TEMPORAL TRANSFORMER OPERATOR

(DITTO)

Oded Ovadia
Department of Applied Mathematics

Tel Aviv University
Tel Aviv, 69978, Israel

odedovadia@mail.tau.ac.il

Vivek Oommen
School of Engineering

Brown University
Providence, RI 02912, USA
vivek_oomen@brown.edu

Adar Kahana
Division of Applied Mathematics

Brown University
Providence, RI 02912, USA
adar_kahana@brown.edu

Ahmad Peyvan
Division of Applied Mathematics

Brown University
Providence, RI 02912, USA
ahmad_peyvan@brown.edu

Eli Turkel
Department of Applied Mathematics

Tel Aviv University
Tel Aviv 69978, Israel

eliturkel@gmail.com

George Em Karniadakis
Division of Applied Mathematics

Brown University
Providence, RI 02912, USA

george_karniadakis@brown.edu

ABSTRACT

Extrapolation remains a grand challenge in deep neural networks across all application domains. We
propose an operator learning method to solve time-dependent partial differential equations (PDEs)
continuously and with extrapolation in time without any temporal discretization. The proposed
method, named Diffusion-inspired Temporal Transformer Operator (DiTTO), is inspired by latent
diffusion models and their conditioning mechanism, which we use to incorporate the temporal
evolution of the PDE, in combination with elements from the transformer architecture to improve
its capabilities. Upon training, DiTTO can make inferences in real time. We demonstrate its
extrapolation capability on a climate problem by estimating the temperature around the globe for
several years, and also in modeling hypersonic flows around a double-cone. We propose different
training strategies involving temporal-bundling and sub-sampling and demonstrate performance
improvements for several benchmarks, performing extrapolation for long time intervals as well as
zero-shot super-resolution in time.

Keywords Scientific machine learning · Diffusion models · Transformers · Partial differential equations.

1 Introduction

The field of scientific machine learning (SciML) has been
growing rapidly in recent years, and many successful meth-
ods for modeling scientific problems using machine learn-
ing (ML) methods have been proposed [36, 28, 24, 27, 52].
Many tools designed for standard ML and data science
problems can also perform well on SciML tasks. Recent
innovations in the field of ML primarily originate from the
domains of natural language processing [14] and computer
vision [20]. Our work exploits and further develops the
main idea of a recently proposed method called diffusion
models [15] (used in generative AI) for solving forward
partial differential equations (PDEs).

Solving time-dependent PDEs is an essential topic for
the scientific community. If the underlying mathemati-
cal operators that govern the temporal evolution of the
system are non-linear and/or there are observational data
available, the task of assimilating and simulating such
processes using discretization-based numerical methods
can become increasingly challenging and computation-
ally expensive. The burden associated with the traditional
numerical solvers is further increased when separate sim-
ulation runs become mandatory for every new initial con-
dition. Moreover, in certain application domains, such as
autonomy and navigation or robotics, real-time inference is

International Conference on Scientific Computing and Machine Learning 2024 (SCML2024)

Diffusion-inspired Temporal Transformer Operator (DiTTO)

required. SciML methods such as neural operators specif-
ically address these issues by significantly reducing the
associated computational costs [28, 24, 48, 3].

Several methods for solving PDE-related problems using
ML methods, and specifically transformers, have been pro-
posed [36, 28, 32]. We solve the forward problem of a
time-dependent PDE by training the neural operator to ac-
curately estimate the state field variable at a later time from
a given initial condition. The main focus of this work is
forecasting a continuous in-time solution in real-time for a
plurality of initial conditions and extrapolating beyond the
training domain. Solving PDE-related problems involves
several challenges including generalizations for different
problem conditions and dependence on the physical do-
main’s discretization. To tackle the first, we utilize tools
from the growing field of operator learning [24, 28], where
we use learning techniques to map a function space to an-
other one. Thus, we learn a family of solutions of PDEs
corresponding to a family of initial conditions. For the
second challenge, we propose a method that, while being
dependent on the spatial discretization, is continuous in the
temporal evolution of the solution, which is a prominent
challenge in solving dynamical systems.

Recent works [35, 47] have demonstrated the efficiency of
U-Net-based architectures for modeling time-dependent
PDEs. However, the outputs of these U-Net-based archi-
tectures are discrete in time. Gupta et al. [7] performed
a systematic ablation study to analyze the significance of
Fourier layers, attention mechanism, and parameter con-

ditioning in a U-Net-based neural operator. The DiTTO
method proposed here is a diffusion-inspired model [45].
The common use of diffusion models involves a genera-
tive process used to create data samples. It incorporates
a Markov chain of diffusion steps, where in each stage
a different texture is added to the data sample. Usually,
the texture is noise, so new noise distributions are incre-
mentally added in each step. The models have also been
used with other kinds of textures, for example creating car-
toonish images from plain ones. Herein, we use a similar
framework, but instead of conditioning on the noise distri-
bution, we do so for the temporal evolution. We explore
several implementations and training strategies, in addi-
tion to the diffusion models themselves. These enhanced
methods form the class of explored DiTTO models. Im-
portantly, we demonstrate how this framework can be used
for extrapolation, i.e., it can make accurate predictions for
samples outside the time interval it was trained to handle.

2 Methodology

We approximate the time evolution of a PDE solution (for-
ward process). Instead of incrementally adding noise to
the inputs, as done with diffusion models, we incremen-
tally evolve the PDE solution over time. We replace the
noise level parameter ε with the temporal variable t (see
Appendix A.1, A.2 for more details). Then, we use the
conditioning capabilities of diffusion models to learn the
relations between the initial condition, the PDE solution,

Figure 1: DiTTO architecture. The discretized initial condition u(x, 0) concatenated with the corresponding spatial
grid, and the desired time t ∈ R+ are the respective inputs to the U-Net and the time-embedding network comprising
DiTTO. The U-Net illustrated here consists of ResNet blocks with temporal conditioning, a Spatial-Attention block,
and Channel-Attention blocks at 4 levels of coarseness and the corresponding residual connections across the same
levels. The ResNet block conditions the non-linear representations of u(x, 0) with respect to the temporal embedding
vector, f⃗(t), by performing element-wise multiplication across the channels. Spatial-Attention and Channel-Attention
blocks learn to extract correlations across space and channels, respectively.

2

Diffusion-inspired Temporal Transformer Operator (DiTTO)

and the time domain. After the training is complete, the
model can interpolate between the initial and final time,
creating a numerical solution that is continuous in time.
We define its time evolution {xt]} as the following process:

{xt| t ∈ [0, tfinal], xt := u(x, t)}, (1)

where u is the solution of the differential equation we at-
tempt to solve. Using this notation, the operator learning
problem becomes:

x0 −→ xt, ∀t ∈ [0, tfinal], (2)

xt ≈ G(x0)(t), ∀t ∈ [0, tfinal], (3)
where G represents the surrogate operator, DiTTO, where
the operator learning technique we employ is the diffusion
process. It is discrete, while (1) is continuous. We dis-
cretize {xt} by taking a partitioning {tn}Tn=0 of [0, tfinal],
where 0 = t0 < t1 < . . . < tT−1 < tT = tfinal.
The discrete process is then defined as {xn}Tn=0, where
xn := u(x, tn). In PDE terms, given an initial condition
x0, we approximate the analytic solution at a set of specific
future time steps {tn}Tn=1. In operator learning terms, we
map a family of functions of the form x0 = u(x, 0) to
another family of functions of the form u(x, t).

The role of the neural network in diffusion models is to
perform conditional denoising in each step. We repurpose
this network structure to solve a PDE-related problem.
Since x0, x1, . . . , xT are taken from the analytical solu-
tion, there is no noise in this process. Therefore, there is
no need for denoising. Thus, we replace the conditional
denoising operation with a conditional temporal evolution
(x0, tn) −→ xn.

Next, we describe the DiTTO architecture. The network re-
ceives two main inputs: the initial condition x0 = u(x, 0)
and a time t = tn. Recall that x0 is a d-dimensional tensor,
and t is a nonnegative scalar. For the temporal input t, we
use an embedding mechanism based on the original Trans-
former positional encoding [49]. Each scalar t is mapped
into a vector of size demb, and then passed through a sim-
ple multi-layer perceptron (MLP) with two linear layers
and a GELU [13] activation function.

For the spatial input x0, we concatenate it with a discrete
spatial grid and provide it as an input to a U-Net [38]. We
use a U-Net variant common in many diffusion models,
such as DDPM [15]. It follows the backbone of Pixel-
CNN++ [40], a U-Net based on a Wide ResNet [53, 12].
A sketch of the spatio-temporal architecture is given in
Figure 1.

This architecture is not limited to a specific dimension. The
same mechanism can be implemented for d-dimensional
problems. The only major difference is the usage of d-
dimensional convolutions for the relevant problem.

We extend DiTTO to develop three variants: DiTTO-s,
DiTTO-point and DiTTO-gate. DiTTO-point is a memory-
efficient version, and DiTTO-gate incorporates a gated
sub-architecture motivated by Runge-Kutta methods. We
also demonstrate the efficacy of two training strategies - 1)

randomly sub-sampling the trajectory timesteps considered
at each epoch (DiTTO-s), and 2) adopting the temporal-
bundling [2] for enhancing the forecast capabilities. These
extensions are further explained in the Appendix A.2.

3 Experiments and Results

We have tested the proposed DiTTO approach on vari-
ous PDEs. Full details regarding these experiments are
given in the appendix. Here, we present partial results for
the hypersonics and climate cases in Figure 2. We com-
pare DiTTO to another operator learning framework called
Fourier neural operator (FNO) [24] when applicable.

3.1 Hypersonic Flow

We train DiTTO to learn the inviscid airflow around a
double-cone object flying at a high Mach number. The flow
physics at hypersonic Mach numbers around the double-
cone geometry features complex transient events, station-
ary bow shock at the leading nose of the cone, and the
interaction of the oblique shock wave originating from
the leading edge with the bow shock formed around the
upper part of the geometry of the cone. The shock layer
is the narrow band between the wall of the double-cone
geometry and the bow shock wave. In the shock layer, due
to the interaction of shock waves, a triple point forms and
generates vortical flow structures that move downstream.
This interaction is challenging to capture using numeri-
cal solvers. The details regarding data creation and the
governing equations are given in the Appendix B.

We now present two experiments conducted for this hy-
personic problem. First, we learn the temporal evolution
of the density field near the double cone. Specifically, we
train the neural operator to learn the mapping from the
incoming horizontal velocity field to the time-dependent
density field around the double cone structure. The dataset
comprises only 61 trajectories corresponding to Mach num-
bers M ∈ [8, 10]. It is split into training, validation, and
testing datasets in the ratio 80:10:10. We use a cosine
annealing type learning rate scheduler starting from 10−3

that decays to 0 during the training. We compare FNO, U-
Net, DiTTO and DiTTO-s. Complete results are reported
in the appendix. We observe in Figure 2A that DiTTO can
accurately resolve the vortices close to the surface of the
double cone.

Additionally, we perform an experiment where instead
of conditioning on time as in most of the examples pre-
sented, we explore the ability to condition DiTTO on a
different quantity: the Mach Number. We train the surro-
gate operator to learn the mapping from the density field
at a specific time step and M = 8 to the density field at
the same timestep but at different Mach numbers in the
range M ∈ [8, 10]. We compare DiTTO with other neural
operators. Our results suggest that DiTTO serves as an
accurate surrogate conditioned on any scalar parameter
and not necessarily time.

3

Diffusion-inspired Temporal Transformer Operator (DiTTO)

3.2 Climate Modeling

Climate models are complex, involving non-linear dy-
namics and multi-scale interactions between multiple
variables. Describing climate behavior using PDEs is
not a straightforward task. Consequently, there are
many different numerical models and ML-based models
[16, 1, 18, 33, 22, 30] that have been developed to model
climate. Climate-related problems are challenging to ap-
proximate accurately at a low computational cost. Our
goal is to efficiently learn the temporal evolution of the sur-
face air temperature across the globe, and make accurate
forecasts by extrapolating beyond the training period.

The results in Figure 2B demonstrate that DiTTO is able to
extrapolate for long time intervals without any substantial

accumulation of errors. The contour plots illustrate the
measured (left) and predicted (right) global temperature
profiles in Spring, Summer, Autumn, and Winter. DiTTO
reduces the growth of the relative L2 error across the 5
years of extrapolation with a mean of 0.014.

Acknowledgements

This work was supported by the Vannevar Bush Faculty
Fellowship award (GEK) from ONR (N00014-22-1-2795).
It is also supported by the U.S. Department of Energy,
Advanced Scientific Computing Research program, under
the Scalable, Efficient and Accelerated Causal Reasoning
Operators, Graphs and Spikes for Earth and Embedded
Systems (SEA-CROGS) project, DE-SC0023191.

(A) Modeling high-speed flow past a double-cone. (B) Five-year climate forecast (extrapolation).

Figure 2: Two examples of DiTTO experiments.
Fig 2A: Modeling high-speed flow past a double-cone. a) The image of the double-cone model installed in the LENS
XX tunnel [39]. b) The histogram illustrates the sensitivity of (i) DiTTO-point, (ii) DiTTO, and (iii) FNO to different
noise levels γ. c) Temporal evolution of the density field (ρ) corresponding to test Mach number (M) = 9.18 around
the double cone geometry predicted by DiTTO-point and its comparison with the solver simulation. d) Additional
illustration of DiTTO-point conditioned on M and trained to predict the final state of ρ.
Fig 2B: Five-year climate forecast (extrapolation). DiTTO is trained on the global temperature data from years 2013 to
2015, validated from 2016 to 2017, and extrapolated from 2018 to 2022. The contour plots on the left and right columns
correspond to snapshots from five years of measured and forecasted global temperature distribution, respectively. The
four rows correspond to the global temperature profiles in Spring, Summer, Autumn, and Winter.

4

Diffusion-inspired Temporal Transformer Operator (DiTTO)

References

[1] Aniruddha Bora, Khemraj Shukla, Shixuan Zhang, Bryce Harrop, Ruby Leung, and George Em Karniadakis.
Learning bias corrections for climate models using deep neural operators. arXiv preprint arXiv:2302.03173, 2023.

[2] Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv preprint
arXiv:2202.03376, 2022.

[3] Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Lno: Laplace neural operator for solving
differential equations. arXiv preprint arXiv:2303.10528, 2023.

[4] Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing systems,
34:24924–24940, 2021.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[6] Ruchi Guo, Shuhao Cao, and Long Chen. Transformer meets boundary value inverse problems. arXiv preprint
arXiv:2209.14977, 2022.

[7] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

[8] Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton university
bulletin, pages 49–52, 1902.

[9] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on pattern analysis and
machine intelligence, 45(1):87–110, 2022.

[10] Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song,
and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In International Conference on
Machine Learning, pages 12556–12569. PMLR, 2023.

[11] Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu, Ze Cheng, Jun Zhu, and
Jian Song. Gnot: A general neural operator transformer for operator learning. arXiv preprint arXiv:2302.14376,
2023.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[14] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[16] James W Hurrell, Marika M Holland, Peter R Gent, Steven Ghan, Jennifer E Kay, Paul J Kushner, J-F Lamarque,
William G Large, D Lawrence, Keith Lindsay, et al. The community earth system model: a framework for
collaborative research. Bulletin of the American Meteorological Society, 94(9):1339–1360, 2013.

[17] Eugenia Kalnay, Masao Kanamitsu, Robert Kistler, William Collins, Dennis Deaven, Lev Gandin, Mark Iredell,
Suranjana Saha, Glenn White, John Woollen, et al. The ncep/ncar 40-year reanalysis project. In Renewable
Energy, pages Vol1_146–Vol1_194. Routledge, 2018.

[18] Georgios Kissas, Jacob H Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J Pappas, and Paris
Perdikaris. Learning operators with coupled attention. The Journal of Machine Learning Research, 23(1):9636–
9698, 2022.

[19] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces. CoRR, abs/2108.08481, 2021.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Advances in Neural Information Processing Systems, 25, 2012.

[21] Varun Kumar, Leonard Gleyzer, Adar Kahana, Khemraj Shukla, and George Em Karniadakis. Crunchgpt: A
chatgpt assisted framework for scientific machine learning. arXiv preprint arXiv:2306.15551, 2023.

5

Diffusion-inspired Temporal Transformer Operator (DiTTO)

[22] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander Pritzel,
Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast: Learning skillful medium-range
global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

[23] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’ operator
learning. arXiv preprint arXiv:2205.13671, 2022.

[24] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

[25] Xinliang Liu, Bo Xu, and Lei Zhang. Ht-net: Hierarchical transformer based operator learning model for
multiscale pdes. arXiv preprint arXiv:2210.10890, 2022.

[26] Yue Liu, Zhengwei Yang, Zhenyao Yu, Zitu Liu, Dahui Liu, Hailong Lin, Mingqing Li, Shuchang Ma, Maxim
Avdeev, and Siqi Shi. Generative artificial intelligence and its applications in materials science: Current situation
and future perspectives. Journal of Materiomics, 2023.

[27] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In International
conference on machine learning, pages 3208–3216. PMLR, 2018.

[28] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence,
3(3):218–229, 2021.

[29] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions) based on
fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

[30] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax: A foundation
model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[31] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[32] Oded Ovadia, Adar Kahana, Panos Stinis, Eli Turkel, and George Em Karniadakis. Vito: Vision transformer-
operator. arXiv preprint arXiv:2303.08891, 2023.

[33] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza Mardani,
Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcastnet: A global data-driven high-
resolution weather model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214, 2022.

[34] Ahmad Peyvan, Khemraj Shukla, Jesse Chan, and George Karniadakis. High-order methods for hypersonic flows
with strong shocks and real chemistry. Journal of Computational Physics, 490:112310, 2023.

[35] Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators. arXiv
preprint arXiv:2204.11127, 2022.

[36] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational physics, 378:686–707, 2019.

[37] Hendrik Ranocha, Michael Schlottke-Lakemper, Andrew Ross Winters, Erik Faulhaber, Jesse Chan, and Gregor
Gassner. Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing. Proceedings
of the JuliaCon Conferences, 1(1):77, 2022.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image seg-
mentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[39] Mehrnaz Rouhi Youssefi and Doyle Knight. Assessment of cfd capability for hypersonic shock wave laminar
boundary layer interactions. Aerospace, 4(2):25, 2017.

[40] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifications. arXiv preprint arXiv:1701.05517, 2017.

[41] Michael Schlottke-Lakemper, Gregor J Gassner, Hendrik Ranocha, Andrew R Winters, and Jesse Chan.
Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs in Julia. https://github.com/
trixi-framework/Trixi.jl, 09 2021.

[42] Michael Schlottke-Lakemper, Andrew R Winters, Hendrik Ranocha, and Gregor J Gassner. A purely hyperbolic
discontinuous Galerkin approach for self-gravitating gas dynamics. Journal of Computational Physics, 442:110467,
06 2021.

6

https://github.com/trixi-framework/Trixi.jl
https://github.com/trixi-framework/Trixi.jl

Diffusion-inspired Temporal Transformer Operator (DiTTO)

[43] Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity flow field
reconstruction. Journal of Computational Physics, 478:111972, 2023.

[44] Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu. Freeu: Free lunch in diffusion u-net. arXiv preprint
arXiv:2309.11497, 2023.

[45] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Conference on Machine Learning, pages 2256–2265. PMLR,
2015.

[46] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[47] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger,
and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. Advances in Neural
Information Processing Systems, 35:1596–1611, 2022.

[48] Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differential equations
in computational mechanics problems. Computer Methods in Applied Mechanics and Engineering, 404:115783,
2023.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[50] Ting Wang, Petr Plechac, and Jaroslaw Knap. Generative diffusion learning for parametric partial differential
equations. arXiv preprint arXiv:2305.14703, 2023.

[51] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers in
time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

[52] Hao Xu, Haibin Chang, and Dongxiao Zhang. Dl-pde: Deep-learning based data-driven discovery of partial
differential equations from discrete and noisy data. arXiv preprint arXiv:1908.04463, 2019.

[53] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

7

Diffusion-inspired Temporal Transformer Operator (DiTTO)

Supplementary Information

Appendix A: Detailed methods

A.1 Background

A.1.1 Operator learning

The standard use of ML models for scientific computations
involves fitting a function to map numerical inputs to out-
puts. These inputs are ordinarily coordinates, materials,
boundary conditions, etc., and the outputs are usually solu-
tions of forward PDEs. An example is physics-informed
neural networks (PINNs) [36], which use a deep neural
network to solve PDEs by embedding elements from the
PDE problem into the loss function. So, the network trains
on the given data while using prior information about the
problem it is solving. A major drawback is that for each
problem, one needs to re-train the network, which is com-
putationally expensive. This includes any changes to the
parameters defining the problem.

Operator learning seeks to overcome this problem. In-
stead of fitting a function, one fits a mapping between
two families of functions. Consider a generic family of
d-dimensional time-dependent PDE problems of the form:


Lu(x, t) = f(x, t), x ∈ D, t ∈ [0, tfinal]

Bu(x, t) = g(x, t), x ∈ ∂D, t ∈ [0, tfinal]

u(x, 0) = I(x), x ∈ D

, (4)

The differential operator L and forcing term f defines the
PDE, the boundary operator B while g defines the solu-
tion on the boundary, tfinal is the final physical time, I
is the initial condition, and D is a Euclidean domain in
Rd with boundary ∂D. We assume that the problem (4) is
well-posed [8], so a unique solution exists.

Let I be a function space containing initial conditions of
(4). Then there exists another space U that contains their
respective solutions. We define an operator G : I −→ U :

G(I)(x, t) = u(x, t), (5)
where I ∈ I, x ∈ D, and t ∈ [0, tfinal]. Each initial
condition I ∈ I is mapped into its corresponding solution
u ∈ U . The goal is to approximate the operator G using a
neural network.

The first SciML operator learning method, called Deep-
ONet, was proposed by Lu et al. [28]. The main compo-
nents of a DeepONet are two neural networks: the branch
and the trunk. Each network can be a fully connected
neural network, convolutional, or any other architecture.
Usually, the branch inputs are functions, and the trunk in-
puts are coordinates. DeepONets learn projections from
the functions to a vector space, so they can map input
functions to output functions at specific points.

Another operator learning approach is the Fourier neural
operator (FNO) [24, 19]. FNOs, similarly to DeepONets,

learn mappings between function spaces using projections.
FNOs utilize the Fourier transform. They are effective
and easy to implement,. FNOs are accurate, especially
for smooth and periodic problems [29]. While the Fourier
kernel is continuous it is necessary to use discrete versions
for operator learning. Consequently, FNOs can be com-
putationally costly when working with high-dimensional
problems requiring many Fourier modes.

A.1.2 Transformers and attention

First presented by Vaswani et al. [49], transformers have
been widely used in the ML community. Transformers
introduce a new type of mechanism called the scaled dot-
product attention. The attention module attempts to gather
context from the given input. It operates on a discrete
embedding of the data composed of discrete tokens.

The original architecture was proposed for natural lan-
guage processing purposes, where one encodes sentences
using their enumerated locations in the vocabulary. Since
then, their usage has been extended to many other do-
mains, and they outperform many different deep learning
architectures in a wide variety of tasks. These domains
include time series analysis [51] and computer vision [9].
For example, Vision Transformers (ViT) [5] split images
into small patches, tokenize them, and apply the attention
mechanism. In addition, they are computationally lighter
than other alternatives and can be easily parallelized.

Transformers are becoming increasingly popular in the
SciML community. They have been used for operator learn-
ing in many different ways [23, 25, 11, 10]. These methods
show much promise by using the attention mechanism to
find connections between points in the physical domain to
function values. Some methods emphasize the attention
mechanism itself [4, 6] and adapt it to PDE-related prob-
lems. Others utilize existing transformer models to solve
PDE problems more easily [21]. In this work, we employ
elements from the original Transformer architecture as part
of the proposed neural network architecture.

A.1.3 Diffusion models

A diffusion model is a generative deep learning model that
uses a Markov chain to produce samples that match a given
dataset [45]. These models aim to learn the underlying dis-
tribution of a given dataset. After learning this distribution,
they are used to generate new samples of similar properties
to those found in the training set.

In [15], Ho et al. introduced a new type of diffusion model
called denoising diffusion probabilistic models (DDPM).
It consists of a forward diffusion process and an inverse
one. In the forward case, Gaussian noise is incrementally
added to the original sample for a given number of iter-
ations. For a sufficiently large number of iterations, the
noise completely destroys the original signal. Then, in
the reverse diffusion process, the goal is to reconstruct
the original signal by performing iterative denoising steps
using a neural network. Diffusion models have been used

8

Diffusion-inspired Temporal Transformer Operator (DiTTO)

for SciML purposes, especially for generative artificial in-
telligence purposes [50, 43, 26]. While we are not using
their generative capabilities in this work, we briefly explain
their standard training procedure.

We present a mathematical formulation based on the works
of Ho et al. [15] and Nichol et al. [31]. Given a data dis-
tribution x0 ∼ q(x0), we define a forward noising process
q which produces steps x1, . . . , xT by adding Gaussian
noise at time t with variance βt ∈ (0, 1) as follows:

q(x1, . . . , xT |x0) :=

T∏
t=1

q(xt|xt−1), (6)

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (7)

Given a sufficiently large T and a well-behaved schedule
βt, the latent xT is nearly an isotropic Gaussian distribu-
tion. From (7), we see that xt is drawn from a conditional
Gaussian distribution with mean µt =

√
1− βtxt−1 and

variance σ2
t = βt. In practice, this is done by randomly

sampling a noise level parameter ε ∼ N (0, I), and setting:

xt =
√
1− βtxt−1 +

√
βtε. (8)

Thus, if we know the exact reverse distribution q(xt−1|xt),
we can sample xT ∼ N (0, I) and run the process in reverse
to get a sample from q(x0). However, since q(xt−1|xt)
depends on the entire data distribution, we approximate it
using a neural network with hyperparameters θ as follows:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (9)

The neural network needs to learn the mean and variance
to complete the backward diffusion process. Importantly,
using the formulation in (8), in each step, it is sufficient
to know βt, xt, and ε to approximate xt−1. Then, the net-
work is used autoregressively to reconstruct x0. Assuming
we know the schedules {βt}Tt=1, we can view the neural
network as the following mapping:

(xt, ε) −→ xt−1. (10)

In each step, the neural network performs a denoising op-
eration, mapping xt to a slightly less noisy signal xt−1.
Including the noise level parameter ε is essential for the
denoising operation. During training, various noise levels
are sampled. Knowing the specific noise level that distin-
guishes between consecutive states xt and xt−1, is crucial
for effective denoising. Without this explicit knowledge
of the noise level, the denoising process would become
significantly more complicated, and the network may not
converge. Thus we have a conditional denoising operation,
conditioned on ε (or equivalently on the timestep with βt).

A.2 DiTTO: Diffusion-inspired temporal
transformer operator

As described in Methodology, we propose using temporal
conditioning, instead of conditioning on noise as in Sec-
tion A.1.3. We use the initial condition of a differential
equation and infer the entire temporal process. It oper-
ates on various initial conditions, hence it is performing
operator learning according to Section A.1.1. In addition,
after training, the inference is possible on any real tem-
poral value. Hence, the inference is continuous in time.
As shown in the results, not only interpolation in time is
possible, but also extrapolation.

To train the DiTTO network we gather data of multiple
time-dependent procedures, varying in the initial condition.
Then, we use the network architecture in Methodology, and
select a training strategy (for example, temporal-bundling),
to fit the data. We elaborate on these steps in the following
subsections.

A.2.1 Training dataset

To train a neural network using the formulation presented
in Methodology, we require a large set of initial condi-
tions (inputs) and corresponding solutions (outputs). Let
{Im(x)}Mm=1 be a set of initial conditions with correspond-
ing analytic solutions {um(x, t)}Mm=1, where M is the
desired number of training samples. Each sample consists
of an initial condition and a PDE solution at the relevant
timesteps. In practice, {um(x, t)}Mm=1 are numerical ap-
proximations of the analytic solutions and not analytic
solutions which are often unavailable. Furthermore, the so-
lutions are discretized in space using a grid that partitions
the domain D. We emphasize that for all m = 1, . . . ,M
and t = 0, . . . , T , um(x, t) is a matrix, and its dimensions
depend on the spatial discretization parameters, i.e., the
number of nodes along each axis.

We denote the forward process corresponding to the m-
th initial condition and solution by {xm

n }Tn=0, where
xm
n := um(x, tn). We define the following datasets:

X = {(xm
0 , tn)| n = 1, . . . , T, m = 1, . . . ,M}

Y = {xm
n | n = 1, . . . , T, m = 1, . . . ,M}. (11)

So, each solution of the PDE is transformed into T pairs
of samples that correspond to the mapping described in
Equation (3).

A.2.2 The DiTTO neural network architecture and
parameters

We use the architecture described in Methodology. We
mention that for the temporal input t, we use an embedding
mechanism based on the original Transformer positional
encoding [49]:

9

Diffusion-inspired Temporal Transformer Operator (DiTTO)

PE(pos,2i) = sin
(pos

100002i/demb

)
,

PE(pos,2i+1) = cos
(pos

10000(2i+1)/demb

)
,

(12)

where demb is the desired embedding dimension. Each
scalar t is mapped into a vector of size demb.

We now describe the loss function used as a target for train-
ing the network. Let Oθ be the neural network described
in Methodology with hyperparameters θ. The goal of Oθ

is to learn the mapping described in (3), using the dataset
(11). We split this dataset into training, validation, and
testing sets. We split them in a way that makes sure that
no initial conditions from the validation and testing sets
appear in the training set.

Diffusion models are often trained with a probabilistic loss
function. However, since we learn a PDE operator, other
loss functions commonly used for SciML applications are
more fitting. Consequently, we train the network with a
mean relative L2 loss:

loss :=
1

MT

M∑
m=1

T∑
n=1

||Oθ(x
m
0 , tn)− xm

n ||2
ε+ ||xm

n ||2
, (13)

where ε is a small number used to prevent a zero denom-
inator and stabilize the loss. The inputs and outputs of
the model are d-dimensional, so they are converted into
a one-dimensional array by column stacking (flattening)
inside the loss function when needed. We describe the
loss for the entire dataset for simplicity, but in practice, we
divide it into batches.

Iterating over the entire dataset (11) can be time-
consuming. For Mtrain initial conditions in the training
set, we have Mtrain · T samples. So, the number of train-
ing steps scales linearly with T . So the number of training
samples is very large for fine temporal discretizations.

A similar problem occurs in generative diffusion models.
The original DDPM [15] requires hundreds of forward
passes to produce good results. Later works suggested
ways to improve the performance aspect of DDPMs. For
example, Song et al. [46] suggest using non-Markovian
processes to improve the computational cost. Nichol et
al. [31] present a way to significantly reduce the number
of necessary steps by sub-sampling the original diffusion
process. Both methods focus primarily on the inference
speed. However, in the case of DiTTO, inference is imme-
diate. In Methodology, we explained that we do not view
x0, x1, . . . , xT as an iterative process. Instead, we treat
each sample individually, significantly increasing the infer-
ence speed compared to generative models such as DDPM.
Hence, we focus on speeding up the training process.

A.2.3 DiTTO-s

We propose DiTTO-s, a faster variant of DiTTO that relies
on a sub-sampling mechanism similar to [31]. Instead of

iterating over the entire process, we iterate over a random
subsequence. Recall that for the m-th initial condition in
the training set, the full process is {xm

n }Tn=1. Instead, we
take a set of random subsequences Sm ⊂ {0, 1, . . . , T},
such that

∑M
m=1 |Sm| = αMT for some α < 1. Choosing

α = 0.05 means we only use 5% of the given samples in
each epoch. The new DiTTO-s loss is given by:

lossα :=
1

αMT

M∑
m=1

∑
n∈Sm

||Oθ(x
m
0 , tn)− xm

n ||2
ε+ ||xm

n ||2
, (14)

After each epoch, we randomly sample Sm again using a
uniform distribution. That way, given a sufficiently large
number of epochs, we expect to cover a significant portion
of samples in the dataset.

A.2.4 DiTTO-point

The architecture shown in Figure 1 can be used for prob-
lems in different dimensions. A way to accomplish that is
to use d-dimensional convolutions in all the convolutional
layers, where d ∈ {1, 2, 3} is the physical dimension of the
problem. Using high-dimensional convolutions requires
a large amount of memory. Furthermore, many physical
problems are not defined on structured grids. Thus, to use a
neural operator framework, it is often necessary to project
their solutions onto regular grids [29], which requires a
change to the geometry of the problem.

To address these issues, we propose DiTTO-point, another
variant of DiTTO that solves high-dimensional problems
using exclusively 1-D convolutions. With DiTTO-point
we treat the domain as a set of points in space instead of
a structured d-dimensional grid. A domain with N points
is defined as a N × d matrix, where each row represents
a spatial coordinate. Similarly, we define the solution on
this domain using a vector of size N , corresponding to the
values of the solution at each point of the domain. Using
this formulation, regardless of the original dimensionality
of the problem, the input to DiTTO-point would always be
of size N × d. This enables the use of 1-D convolutions
on this data, where d is the number of input channels.

However, directly using the architecture shown in Figure 1
with 1-D convolution does not work, without any mod-
ifications, on high-dimensional problems. Importantly,
switching from a structured grid to a set of coordinates
results in the loss of spatial information. This is especially
true when the order in which the coordinates appear is not
necessarily related to their physical distance. To solve this
issue, we use another layer of positional encoding (see
Equation (12)) based on the spatial coordinates of the grid.
We apply this layer to the beginning of the overall archi-
tecture before we concatenate its output with the relevant
initial condition in the latent space. This enables DiTTO-
point to keep high-dimensional spatial information while
using a one-dimensional architecture.

10

Diffusion-inspired Temporal Transformer Operator (DiTTO)

A.2.5 DiTTO-gate

We propose another variant of the architecture shown in
Figure 1, called DiTTO-gate. Now, we modify the behav-
ior of the skip connections of the U-Net decoder. Analysis
of diffusion models shows that the U-Net skip connections
introduce high-frequency features into the decoder [44].
For scenarios with fine details and sharp features, we put
extra emphasis on the skip connections. So, we introduce
a gate component, which operates directly on the skip
connections. This component is composed of a standard
convolutional block, as described in Methodology. So, in
DiTTO-gate, we add such a component to each level of the
decoder and use it on its incoming skip connection.

Appendix B: Hypersonic flow data
generation and details

We first generate a training dataset by solving the 2D Euler
equations on a fluid domain around a double-cone geome-
try. The governing equations are

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (15)

where the vector of conservative variables, x-direction and
y-direction flux vectors, are described as

U =

 ρ
ρu
ρv
ρE

 ,F =

 ρu
ρu2 + p
ρuv

u(ρE + p)

 ,G =

 ρv
ρvu

ρv2 + p
u(ρE + p)

 .

(16)
In Equation (15), t is time, x, y are the spatial coordinates,
u and v are the x-direction and y-direction velocities, ρ is
density, and p is the pressure. The total energy in Equa-
tion (16) is illustrated as

ρE =
p

γ − 1
+

1

2
ρ(u2 + v2), γ = 1, 4 (17)

We solve the system of equations using Trixi.jl numerical
framework [41], which employs entropy stable discontin-
uous Galerkin spectral element (ES-DGSEM) approach
[37, 42, 34] to solve hyperbolic and parabolic systems of
equations. ES-DGSEM features high accuracy and stabil-
ity and employs adaptive mesh refinement to automatically
adapt the mesh resolution to high gradient regions of the
flow field. The 2D physical domain is shown in Figure 3,
where the boundary conditions are specified. Let M be
the free-stream Mach number. The domain is initialized
using constant uniform values for primitive variables as
u = M , v = 0, p = 1.0, and ρ = 1.4. Each simulation
is performed for a time t ∈ [0, 0.04],. The solution values
are shown at 201 snapshots corresponding to equidistance
instances of time.

Figure 3: 2D domain of the double cone problem. The
gray area is the domain and the highlighted lines show the
surface of the double cone, which is a slip wall boundary
condition. The small line at the bottom is a symmetry con-
dition. The inflow and outflow boundaries are also shown.

Appendix C: Extrapolation in time

Extrapolation is a challenging problem due to the inherent
nature of the data-driven surrogate networks to overfit the
training distribution. We discuss a training strategy that
partially alleviates the difficulties associated with extrapo-
lation in time in using DiTTO.

During the training of DiTTO, the model is exposed only
to the first 100 time steps. We train DiTTO with three
types of time-series modeling strategies demonstrated in
part a) of Figure 4 - i) autoregressive (look-forward win-
dow lf = 1), ii) temporal-bundling (1 < lf < nt) [2],
and iii) mapping (lf = nt). We analyze their ability to
extrapolate beyond the 100th time step. Specifically, we
train 6 different DiTTO models with lf=1, 5, 10, 20, 50,
100(= nt). During the training, DiTTO learns a mapping
u(x̄, t) → u(x̄, t + lf) such that t + lf is less than the
number of time steps, nt = 100. Hence, each trajectory in
the training dataset is split into nt− lf +1 sub-trajectories.
During the inference stage, DiTTO leaps from û(x̄, t) to
û(x̄, t + lf). Because the ground truth is not available,
except at t = 0, we consider u as the ground truth and û
as a prediction from DiTTO.

C.1 Navier-Stokes Equations

As an example, we train DiTTO on the two-dimensional
incompressible Navier-Stokes equation for a viscous, in-
compressible fluid in vorticity form is given by:
∂tω + u · ∇ω = ν∆ω + f,

∇ · u(x, y, t) = 0, (x, y) ∈ (0, 1)2, t ∈ (0, tfinal]

ω(x, y, 0) = ω0, (x, y) ∈ (0, 1)2

(18)

11

Diffusion-inspired Temporal Transformer Operator (DiTTO)

Figure 4: Temporal-bundling for efficient extrapolation. a) demonstrates 3 types of time-series modeling strategies
for extrapolating beyond the training interval. We consider a time series with 20 time steps. b) visualizes the error
accumulation for DiTTO models with different look-forward windows (lf) trained in the time interval 0-100 and
extrapolated from 100-200. c) shows the relative percentage L2 errors at the 200th time step, corresponding to DiTTO
models with different lf. The results in b) and c) come from the test dataset with previously unseen 100 initial conditions.
The symbols in (b-c) denote the corresponding final time.

where ω is the vorticity, u is the velocity field, ν is the
viscosity, and ∆ is the two-dimensional Laplacian op-
erator. We consider periodic boundary conditions. The
source term f is given by f(x, y) = 0.1(sin(2π(x+y))+
cos(2π(x+y))), and the initial condition ω0(x) is sampled
from a Gaussian random field according to the distribution
N (0, 73/2(−∆+ 49I)−5/2).

The dataset consists of 1000 trajectories with 200 time
steps. It was randomly split into training, validation, and
testing datasets in the ratio 80:10:10.

In Figure 4(b,c), we observe the minimum error with the
lowest uncertainty occurs at lf = 20, suggesting that the
temporal-bundling technique [2] offers a sweet spot be-
tween the autoregressive and the mapping strategies for

extrapolating in time, with lower rates of error accumula-
tion. Next, we investigate the extrapolation abilities of the
temporal-bundling strategy for the climate problem.

C.2 Climate Dataset

We use a publicly available climate dataset provided
by the Physical Sciences Laboratory meteorological
data: https://psl.noaa.gov/data/gridded/index.
html [17]. This data contains measurements of parame-
ters over time, projected onto a spatial grid. We use the
daily average surface temperature data (at 1000 millibar
Pressure level) from January 1, 2013, to December 31,
2015, for training; January 1, 2016, to December 31, 2017,
for validating; and January 1, 2018 to December 31, 2022

12

https://psl.noaa.gov/data/gridded/index.html
https://psl.noaa.gov/data/gridded/index.html

Diffusion-inspired Temporal Transformer Operator (DiTTO)

for testing (see Figure 2B). The data is projected to a spa-
tial grid of dimensions 144 × 72, which corresponds to
a resolution of 2.5◦ in both latitude and longitude. We
split the data to training, validation and test sets in the
ratio 30:20:50, for investigating the real-time long-term
temporal extrapolation capability of DiTTO.

The experiments shown in Figure 4 motivated the adop-
tion of the temporal-bundling technique with lf = 365 for
training DiTTO. The training dataset can be interpreted as

a single trajectory consisting of 1095 global temperature
snapshots arising from the initial condition on Jan. 1, 2013.
We utilize temporal-bundling with lf = 365 to split this
trajectory into 730 sub-trajectories, each comprising 365
time steps. We further reduce the computational costs as-
sociated with the training and inference by performing a
proper orthogonal decomposition and training DiTTO to
learn the evolution of the eigen coefficients corresponding
to the five dominant eigenvectors estimated from the global
temperature profiles in the training dataset.

13

	Introduction
	Methodology
	Experiments and Results
	Hypersonic Flow
	Climate Modeling

	Detailed methods
	Background
	Operator learning
	Transformers and attention
	Diffusion models

	DiTTO: Diffusion-inspired temporal transformer operator
	Training dataset
	The DiTTO neural network architecture and parameters
	DiTTO-s
	DiTTO-point
	DiTTO-gate

	Hypersonic flow data generation and details
	Extrapolation in time
	Navier-Stokes Equations
	Climate Dataset

