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ABSTRACT

In this paper we propose a method for estimating dynamical systems using a sparse representation of
the Koopman operator. The Koopman operator is inherently considered with infinite dimensional
observables. The proposed method imposes a sparse constraint on the elements of the matrix that
approximates the Koopman operator. Experiments on nonlinear dynamical systems showed that the
proposed method was more accurate than the unconstrained method when the number of observables
was large. It is also shown that the Koopman operator is sparsely estimated with more zero elements.
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1 Introduction

In recent years, advances in measurement and computational techniques have improved the quality of data, and also
the quantity of data has become enormous. These developments have led to a focus on data-driven approaches to
extracting the structure and properties of systems from data. Data-driven approaches are important approaches for a
variety of disciplines [1, 2], including natural sciences such as earth sciences [3, 4, 5, 6, 7] and neuroscience [8, 9], and
for engineering disciplines such as fluid engineering [10, 11, 12, 13] and thermal engineering [14, 15].

Nonlinear dynamical systems are often used to describe natural phenomena and engineering systems due to their ability
to model complex or highly interrelated behavior that is difficult to represent in linear dynamics. Because nonlinear
dynamical systems are represented by nonlinear functions, the correspondence between inputs and outputs becomes
complex, making it difficult to predict and analyze their behavior.

In the analysis of nonlinear dynamical systems, the Koopman operator has attracted much attention [16, 17, 18, 19, 20,
21, 22, 23]. The Koopman operator is a linear operator introduced for nonlinear dynamics. The Koopman operator
generally requires consideration of an infinite-dimensional function space, including a function called an observable,
but for actual calculations the Koopman operator must be approximated in a finite dimension. Therefore, when using
the Koopman operator, the choice of functions as observables is important.

In this paper we propose a method for estimating dynamical systems using a sparse representation of the Koopman
operator. This method imposes a regularization on the magnitude of the corresponding coefficient for each observable
and performs sparse estimation. The results demonstrated that this method can achieve accurate estimation in long-term
forecasts even when a high-dimensional observable space is assumed, and that the Koopman operator can be represented
by a sparse matrix.
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2 Methodology

2.1 Koopman Operator

The Koopman operator allows linearization of nonlinear dynamical systems. In this case, the dynamics which is
nonlinear in a finite dimension, is transformed into an infinite dimensional linear space by introducing observables. For
a state variable y(t), consider the following mapping that transfers one observation value to another:

KF (y(t)) = F (A(y(t))) (1)

where y ∈ Y is state variable, Y is finite-dimensional state space, A : Y → Y is nonlinear mapping in state space
Y , F : Y → R is nonlinear mapping in the space F of observables, and K : F → F is mapping from the space of
observables to the space of different observables.

With respect to Eq. (1), the operator that specifically takes into account the time evolution of the state variable is called
the Koopman operator. Using the Koopman operator, the time evolution of the time-variant state variable y(t) can be
expressed as follows:

KsF (y(t)) = F (y(t+ s)) (2)
where t and s are real numbers representing time, and Ks is the Koopman operator, which is the operator that leads to
the s-step forward time evolution. Since the Koopman operator is a linear operator, the following properties of linear
operators can be used:

Ks {c1f1(y(t)) + c2f2(y(t))} = c1Ksf1(y(t)) + c2Ksf2(y(t)) (3)

where c1, c2 ∈ R and f1, f2 ∈ F .

When performing calculations using the Koopman operator, it is necessary to approximate an infinite-dimensional
operator with a finite-dimensional one due to the limitation of computational resources. Therefore it is important to
introduce a function space that is compatible with the characteristics of nonlinear dynamical systems for estimation
dynamical systems using the Koopman operator.

2.2 Proposed Method

In this paper we propose a method to select a function from a large number of candidate functions by using sparsity,
aiming to achieve accuracy in dynamical system estimation with a better approximation of the Koopman operator in
finite dimensions. Since the Koopman operator is a linear operator, it can be approximated using matrices as follows:

Ks ≈ [k1 k2 · · · kp]
⊤ ∈ Rp×p (4)

where p ∈ Z is the number of observables to define and k1, · · · ,kp ∈ Rp are elements of the Koopman operator in
each row.

Let the observables be f1(y(t)), · · · , fp(y(t)), and focusing on fi(y(t)), it can be expressed as follows using the
approximation in Eq. (4):

fi(y(t+ s)) ≈
p∑

j=1

ki,jfj(y(t)) (5)

We estimate to be sparse with respect to this coefficient ki. We consider the following loss function with respect to the
coefficients ki corresponding to all observables(i = 1, ..., p):

L(ki) =

∥∥∥∥∥∥fi(y(t+ s))−
p∑

j=1

ki,jfj(y(t))

∥∥∥∥∥∥
2

2

+ λ∥ki∥1 (6)

The sparse coefficients can be estimated by minimizing Eq. (6). By performing this minimization for each observable,
the Koopman operator is reconstructed as follows:

K⋆
s ≈

[
k⋆
1 k⋆

2 · · · k⋆
p

]⊤ ∈ Rp×p (7)

Estimated Koopman operator K⋆
s has smaller values of elements, especially eliminating the effects of unnecessary

coefficients. The reproduction of the behavior of the state variable y(t) can be calculated by including y(t) as the
observable. Set f1(y(t)) = y(t) and repeat the following lines of calculation:

[y(t+ s) f2(y(t+ s) · · · fp(t+ s))]
⊤
= K⋆

s [y(t) f2(y(t)) · · · fp(y(t))]
⊤ (8)

By performing this calculation, the observable f1(y(t)) = y(t) is the value corresponding to the behavior of the system.
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3 Results

To evaluate the performance of the proposed method, experimental results are presented for two nonlinear dynamical
systems: a single pendulum and a Duffing oscillator. The evaluation criterion is the long-term prediction accuracy when
only initial values are given, and the sparsity of the Koopman operator is also evaluated. To demonstrate the superiority
of the proposed method, we compare our method with the least squares method without regularization (LSM). The
hyperparameter λ of the proposed method was selected to provide the highest long-term forecast accuracy.

3.1 Single Pendulum

In this experiment, we consider the behavior of the state variable of a single pendulum, which is formulated by the
following simultaneous differential equations:
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Figure 1: Comparison of long-term forecasts in a single pendulum.
True trajectories (black dashed lines) and predictions for the training
period (blue dots) and the test period (red crosses) are shown. The
results of long-term forecasts by LSM deviate from the true trajectories
after the next point of the initial values.

dy1(t)

dt
=

y2(t)

m
(9)

dy2(t)

dt
= −mg sin(y1(t)) (10)

where y1(t) and y2(t) are the state vari-
ables and m and g are the parame-
ters of the system. For training, data
points of time span 0 ≤ t ≤ 2 at
0.05 intervals were used. Polynomi-
als up to the 10th order of the state
variables y1(t) and y2(t) were pre-
pared in advance as the observed values.

The results of the long-term forecasts
given only the initial values are shown
in Figure 1. LSM shows divergence as
early as in the prediction of the next
step of the initial value. On the other
hand, the proposed method reproduces
the behavior quite accurately over a
span up to t = 50, which is longer
than the training data; root mean square
error (RMSE) is 2.69 × 10−5, which
quantitatively guarantees the forecast’s
accuracy.
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Figure 2: Comparison of estimated Koopman operators in a single
pendulum. The operator estimated by the proposed method (left figure)
and one estimated by LSM (right figure) are visualized in the form of Eq.
(4). As the element increases in the positive direction, the red becomes
darker, and as the element moves toward the negative direction, the blue
becomes darker. As the element approaches zero, it becomes whiter,
and a completely zero element is represented by a black dot.

Next, Figure 2 shows a visualization
of the elements of the estimated Koop-
man operator. It can be seen that the
Koopman operator estimated by LSM
has large absolute values of its ele-
ments. On the other hand, the opera-
tor estimated by the proposed method
has smaller absolute values than does
the operator estimated by LSM. In
particular, there are more zero ele-
ments: 0.02% (1 element) for LSM and
52.07% (2200 elements) for the pro-
posed method. In the method without
regularization, the fitting becomes com-
plicated and positive and negative val-
ues tend to cancel each other out. On
the other hand, it can be seen that the
proposed method achieves the selection
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of observables by imparting sparsity and suppresses the appearance of elements that are unnecessary for reproducing
the behavior.

3.2 Duffing Oscillator
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Figure 3: Comparison of long-term forecasts in Duffing oscillator. See
the caption for Figure 1.

The Duffing oscillator formulation is as
follows:

dy1(t)

dt
= y2(t) (11)

dy2(t)

dt
= −ay1(t)− by31(t) (12)

where y1(t), y2(t) are the state vari-
ables and a, b are the parameters of the
system. For training, data points of
time span 0 ≤ t ≤ 4 at 0.05 intervals
were used. Polynomials up to the 10th
order of the state variables y1(t) and
y2(t) were prepared in advance as the
observed values.

Figure 3 shows the results of the long-
term forecasts given only the initial val-
ues As in the case of the single pendu-
lum, the proposed method reproduces
the behavior quite accurately for spans
up to t = 50, which is longer than
the training data, while LSM shows di-
vergence at the prediction of the next
step of the initial value. RMSE of
the long-term forecasts of the proposed
method is 8.82× 10−5, which assures
that the accuracy is quantitatively high.
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Figure 4: Comparison of estimated Koopman operators in Duffing
oscillator. See the caption for Figure 2.

A visualization of the estimated Koop-
man operators is shown in Figure 4.
The Koopman operator estimated by
LSM has large absolute values of their
elements, while the operator estimated by the proposed method has smaller absolute values than does the operator
estimated by LSM. Zero elements also occur more frequently: 0.07% (3 elements) for LSM and 46.84% (1979 elements)
for the proposed method. The matrix with more zero elements derived by the proposed method can be applied to
algorithms such as sparse matrices, which may lead to a reduction in the computational complexity of the simulation.

4 Conclusion

In this paper we propose a method for estimating dynamical systems using a sparse representation of a Koopman
operator. This is a data-driven estimation of the Koopman operator that imposes a constraint on the magnitude of
the absolute values of the elements, aiming to appropriately approximate a Koopman operator, which is originally
infinite-dimensional, in finite dimensions. In the dynamical system estimation using a Koopman operator, when many
functions are assumed as observables, it is shown that the proposed method is considerably superior to the unconstrained
method in terms of long-term forecasts. It was also shown that Koopman operators with many zero elements were
estimated, and the possibility of applying the method to sparse matrices was also demonstrated.
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